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1Department of Cognitive, Linguistic, and Psychological Sciences, Brown University
2Department of Psychology, University of Toronto 3Vector Institute
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Abstract
Functional relations are prevalent in everyday life and science.
Do children have intuitive knowledge of functional relations,
and can they learn these relations by active information gath-
ering (i.e., choosing a few input values and observing the cor-
responding outputs)? We found that 6- to 9-year-olds can learn
different families of functions (linear, Gaussian, and expo-
nential) through both informative data provided by an exper-
imenter and data they gather from the environment for them-
selves. Overall, children learn linear functions more accurately
than non-linear functions. When choosing data points to learn
about, some children select highly similar points that only shed
light on a narrow region of a function, while others choose
more variable inputs and gain a more holistic view of a func-
tion. Children who use this latter, globally informative strat-
egy have higher learning accuracy, particularly for non-linear
functions. Results suggest that children are in the process of
developing effective strategies for active function learning.
Keywords: function learning; active learning; sampling

Introduction
Imagine that a child wants to make playdough with the per-
fect texture. Although online recipes can provide a general
ratio of different ingredients (e.g., water, flour, oil, and cream
of tartar), the child may still need to find out the specific
combination that works best for them. For example, under-
hydrated dough will be crumbly, over-hydrated dough will be
sticky, and the optimal water-to-flour ratio may depend on the
home humidity level. Trying numerous ratios and kneading
each dough is time-consuming, so the child may judiciously
choose a few ratios to test out to determine the best recipe.

Function learning describes this process of learning the
relations between inputs and outputs and using them to
make predictions about novel scenarios. The ability to learn
functional relations is crucial to everyday life and science,
whether the relation to be learned is how hydration levels af-
fect playdough texture or how infectious diseases spread over
time. Besides the difficulty of inferring the functional form
and parameters accurately in the vast space of possibilities,
function learning in real life is challenging because learn-
ers often do not passively receive the relevant information.
Just as determining the relation between hydration levels and
playdough texture requires choosing various ingredient ratios
to test out, function learning often requires active selection of
useful data, a process referred to as active learning.

In the present study, we explore how children learn func-
tional relations through self-directed information search. Is
knowledge about functions part of children’s intuitive under-
standing of the world, or does it emerge later, perhaps through

formal math education? Much of what we know about chil-
dren’s function learning comes from education research that
has focused on ways to teach functions through math lessons.

Education studies suggest that, with appropriate lessons,
elementary school children can learn simple functions (Blan-
ton & Kaput, 2004; Blanton et al., 2015; Stephens et al.,
2017). Using data from everyday scenarios (e.g., a number
of dogs and the corresponding number of total eyes), students
can learn linear relations and use them to predict outputs for
novel input values as early as first grade, and they reliably
do so from third grade on. However, these lessons require
reasoning with exact numbers and verbalizing one’s thinking.
Causal learning and scientific thinking studies show that chil-
dren succeed on implicit reasoning tasks before they succeed
on explicit versions of the same tasks (Shtulman & Walker,
2020; Weisberg & Sobel, 2022). Thus, children may show an
earlier understanding of functions in intuitive reasoning tasks.

Function learning in non-classroom contexts has been
widely studied in adults, typically by showing learners nu-
merical input-output pairs before asking them to predict out-
puts for new input values. Adults can learn various functions
(e.g., linear, quadratic, cyclic; Bott & Heit, 2004; Wilson
et al., 2015), but their inductive biases favor learning linear
functions (Brehmer, 1974; McDaniel & Busemeyer, 2005)
and they often extrapolate linearly, even when the true rela-
tion is non-linear (DeLosh et al., 1997; Kalish, 2013). Re-
cent studies suggest that adults can also learn functions when
input-output pairs are presented graphically in scatterplots (E.
Schulz et al., 2017), and they learn linear functions more ac-
curately than non-linear (exponential) ones in these visual
trend detection tasks as well (Ciccione et al., 2022).

Only a few studies have tested children’s intuitive knowl-
edge of continuous mathematical functions. Coates et al.
(2023) presented functions to 4- to 7-year-olds in causal sce-
narios, in which flashing lights made flowers bloom. Children
can match the lights and flowers by the functions that underlie
their change (e.g., rates of flashing or blooming). They can
distinguish functions both across and within function fami-
lies (monotonic, U-shaped, and periodic) and can match vi-
sualizations to descriptions. Notably, this study has tested
comprehension using matching decisions based on contrast-
ing options, but function learning requires more than being
able to distinguish functions, such as the ability to interpolate
between and extrapolate beyond observed data points.

Another set of studies tested children’s fine-grained un-
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derstanding of linear and exponential functions by showing
them the initial steps of a growth curve before asking them to
forecast the subsequent steps. Across these studies, 5 to 13-
year-old children predicted linear growth accurately. When
children begin to understand exponential functions, however,
is less clear (Ebersbach & Wilkening, 2007). Five-year-olds
distinguished linear and exponential functions to some extent
by predicting distinct growth rates, yet both rates were con-
stant (Ebersbach et al., 2010). Nine-year-olds’ predictions of
exponential growth followed the correct curve in one study
(Ebersbach & Resing, 2008) and a straight line in another
study (Ebersbach et al., 2008). This evidence suggests that
children, like adults, may show a linear bias, and that chil-
dren’s understanding of non-linear functions may emerge be-
tween kindergarten and the early elementary school years.

These past studies have relied on passive observational de-
signs, in which children learn functions from data provided
by an experimenter. However, function learning in the real
world – as in our playdough example – often involves first
selecting what data to sample and then drawing appropriate
inferences based on those data. Data gathering is often costly,
as opportunities to sample data are limited and the process of
data gathering is time-consuming. To ensure that the limited
opportunities for information gathering are well-used, learn-
ers need to judiciously choose the most useful data to sample.

Active learning studies have examined how children and
adults learn reward distributions when searching in environ-
ments with spatially-correlated rewards, as learners balance
needs for reward and information (e.g., Meder et al., 2021;
Wu et al., 2018). However, we focus on how people learn
functions when their search is solely driven by the need for in-
formation. Recent studies show that adults can learn various
functions (e.g., linear, exponential, quadratic, cyclic) by ac-
tive data gathering. They use equidistant sampling (i.e., sam-
pling the minimum and maximum of all possible inputs and
evenly spaced values in between), instead of computation-
ally costly strategies that involve adaptation to newly sampled
data (Gelpi et al., 2021, 2023). This strategy reduces the need
for extrapolation (i.e., predicting outputs for inputs outside
the range of observed input values), which is a particularly
difficult aspect of function learning, especially for non-linear
functions (DeLosh et al., 1997; Kalish et al., 2004).

Active learning studies have also shown powerful ways in
which children can learn through their own actions, for ex-
ample, in causal contexts (Sim & Xu, 2017; Sobel & Som-
merville, 2010). Preschoolers selectively explore when they
encounter inconsistent or confounded information, and explo-
ration allows them to resolve the ambiguity (Legare, 2012;
L. E. Schulz & Bonawitz, 2007). Yet if children can actively
learn mathematical functions is less explored. In the current
study, we examine if children can learn different forms of
functions through data they gather for themselves, in addition
to informative data provided to them. We also characterize
the information-seeking strategies children may use.

Our task involved learning about different growth patterns,

as children understood functions in the context of growth
(e.g., Coates et al., 2023) and growth curves could follow var-
ious shapes. Children learned about apple growth over time
in an orchard. They first saw data on apple quantities at a few
time points before making predictions for unobserved time
points. Depending on the trial type, the initial data were either
chosen by the experimenter (Prediction Only trial) and highly
informative, or chosen by the children themselves (Sample
+ Prediction trial). Specifically, the informative data were
equidistant samples that generally led to accurate function
learning in adults (Gelpi et al., 2021, 2023). We expected
some children might use this effective, adult-like strategy in
their own data gathering, sampling the extrema of a func-
tion and perhaps evenly-spaced points in between. Children
who are less systematic in their search might densely sample
one area of the function domain. We predicted that children
whose samples are dispersed might gain a more holistic and
accurate view of the function than those with clustered sam-
ples that only shed light on a small section of the function.

Although learning from self-generated data enhances chil-
dren’s memory (Markant et al., 2016) and allows them to
make more accurate causal inferences (Sobel & Sommerville,
2010) than passively viewing the same data, the benefits of
active learning may not all transfer to the current task. In our
study, self-selected data are pitted against highly informative
data given by the experimenter (instead of data chosen ran-
domly or by a yoked peer); if children do not yet gather data
effectively, these benefits may be counteracted by a lack of
useful data to learn from. We therefore have no directional
hypothesis on how children may learn differently from self-
selected data versus passively received useful data. Our goal
is to examine if children can learn various functions both with
maximal scaffolding and through self-directed exploration.

We focus on three function families: linear, Gaussian, and
exponential. These functions vary in abstract features (linear-
ity and monotonicity), allowing us to test if children’s learn-
ing is sensitive to these features. Since children find these
functions increasingly hard in math class (Stephens et al.,
2017) and understand linear relations earlier than exponential
ones (Ebersbach & Wilkening, 2007), we expect that children
may learn linear functions better than non-linear ones. Alter-
natively, as children have more diffuse priors than adults (Lu-
cas et al., 2014), they may not find non-linear functions harder
than linear ones. We focus on 6- to 9-year-olds, as children’s
knowledge of non-linear functions seems to emerge between
kindergarten and the early elementary school years (Ebers-
bach & Resing, 2008; Ebersbach et al., 2008, 2010).

Methods
We investigated if children can learn functional relations and
use them to predict outputs for new input values, (1) through
passively observing informative data selected for them by an
experimenter (Prediction Only trials) and (2) through self-
selected data (Sample + Prediction trials). We also charac-
terized children’s strategies for self-directed data gathering.
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Prediction Only Trial Sample + Prediction Trial

Sampling Phasea Prediction Phaseb

Feedback Phasec

Figure 1: Example trial (true function: Gaussian). (a) Sampling phase. The timeline represented a 15-day period, and the apples
above each day showed the number of apples that grew that day. In Prediction Only trials, the apple quantities for five days
were already shown. In Sample + Prediction trials, children sampled five time points, by tapping the blue bar above a given day
to reveal the apple quantity for that day. (b) Prediction phase (visualized with the samples from the Samples + Prediction trial
in (a)). Children predicted the apple quantities for the remaining 10 days, adding their guess for a day by repeatedly tapping
the blue bar above that day, with one apple added for each tap. (c) Feedback phase. The true growth pattern (solid red apples)
was superimposed on children’s predictions (faint red apples), and the over-predicted apples were crossed out.

Test conditions
This study used a two (trial type: Prediction Only, and Sam-
ple + Prediction) by three (function family: linear, Gaussian,
and exponential) within-subject design, with six trials in to-
tal. Each function family appeared in both trial types with
different parameterizations. Children completed the Predic-
tion Only trials before the Sample + Prediction trials. We
chose this fixed order so that children would have similar pri-
ors about the possible function families before choosing their
own data, as this knowledge could affect children’s sampling.

Participants
Fifty 6- to 9-year-olds (Mage = 7.84, range = 5.75–9.75 years)
were recruited from a local children’s museum and a local
school. Four participants were excluded from analyses due to
data recording error (n = 2), experimenter error (n = 1), or task
comprehension issue (n = 1), leaving 46 participants in the fi-
nal sample. Due to the exploratory nature of this experiment
and the constraints of testing in a museum or school setting,
not all children completed the full task. Twenty-two children
completed both trial types, 22 children only completed Pre-
diction Only trials, and two children only completed Sample
+ Prediction trials (Mtrials = 3.74, range = 2–6 trials).

Procedure
Children were tested in person, and the task was presented on
a tablet device through a web-based interactive program. In
the introduction phase, children learned about a farmer and

his apple orchard by viewing a series of pictures. Children
were told “Every day, the farmer picks all of the apples that
grew in his orchard that day. He also keeps a record of how
many apples grew each day. On some days, the weather is
nice and a lot of apples grow. On other days, the weather is
bad and only a few apples grow. So the number of apples that
grow each day can be the same or different. Your job is to
figure out the pattern of how apples grow from day to day.”

The sampling phase was the only phase in which the two
trial types differed (Figure 1a). In both trials, children first
saw a timeline consisting of daily calendar icons labeled with
numbers one through 15, representing 15 days. In Predic-
tion Only trials, apple quantities for five of the 15 days were
shown (all at once) through corresponding numbers of ap-
ples. Specifically, we chose days 2, 5, 8, 11, and 14 as a set
of equidistant, informative samples. We confirmed that these
samples were highly informative, through simulations which
showed that they led to more accurate inferences than myopi-
cally optimal1 or random samples. Children were told “The
farmer shared part of his record with us, so we already know
how many apples grew on these five days.” In Sample + Pre-
diction trials, no information about apple quantity was known
initially. Children were told “The farmer has not shared his
record with us, so you first need to choose five of these days
to ask him about. When you ask him about a day, he will tell

1Samples chosen serially, with adaptation to newly sampled data;
at each time step, the sample that maximally reduces uncertainty for
the immediate next step (conditioning on all existing data) is chosen.

231



you how many apples grew that day. You can choose any five
days to ask about.” Children could sample a day by tapping
above the corresponding calendar icon, and the apple quan-
tity would appear and stay on the screen. Children repeated
this process until they had sampled five different days.

In the prediction (test) phase, children guessed the apple
quantities for the remaining 10 days (Figure 1b). Children
made a prediction for a day by repeatedly tapping above the
corresponding calendar icon—each tap would add one more
apple. To distinguish the true apple quantities revealed during
sampling and the predicted quantities, the former appeared as
solid red apples while the latter appeared as faint red apples.

In the feedback phase, the true apple quantity for each of
the 10 predicted days was superimposed on children’s predic-
tion as solid red apples (see Figure 1c). Over-predicted ap-
ples were crossed out, and under-predicted ones were circled.
Children received qualitative feedback on their performance
(e.g., “Some/most of your guesses were correct/incorrect.”)
so that they could focus on their overall performance instead
of the exact prediction error at a given time point. Children
were also asked to verbally describe the true apple growth
pattern to ensure they understood the feedback.

Results
We first tested if children’s prediction performance differed
when they learned from passively received informative data
(Prediction Only trials) versus self-selected data (Sample +
Prediction trials), and across different function families. To
measure children’s performance on the prediction task, we
computed the absolute prediction error for each of the 10 days
that children made predictions for in a trial, by taking the ab-
solute difference between the predicted and true apple quan-
tities. Because this variable followed a Poisson distribution
and each child made multiple predictions, we used general-
ized linear mixed models with a Poisson distribution, with a
random intercept for each child to analyze their performance.

0

1

2

3

4

5

Linear Gaussian Exponential

A
bs

ol
ut

e 
pr

ed
ic

tio
n 

er
ro

r

Trial type Prediction Only Sample + Prediction

Figure 2: Absolute prediction error by function family. Ver-
tical bars show 95% CIs.

We modeled children’s absolute prediction error using
trial type, function family, age (in months), and the in-
teraction between trial type and function family as predic-

tors (Figure 2). Children’s prediction error varied signif-
icantly across trial types (χ2(1) = 39.03, p < .001) and
function families (χ2(2) = 391.74, p < .001). Specifi-
cally, prediction error was lower in Prediction Only trials
than Sample + Prediction trials (b = −0.176, 95% CI =
[−0.261,−0.09], z =−4, p < .001). Error was lower on the
linear function than the Gaussian function (b =−0.76, 95%
CI = [−0.86,−0.66], z =−14.6, p < .001) and lower on the
Gaussian function than the exponential function (b =−0.18,
95% CI = [−0.24,−0.11], z = −5.1, p < .001). Chil-
dren’s prediction error also marginally decreased with age
(χ2(1) = 3.11, p = .078). Further, the effect of trial type
differed across function families (χ2(2) = 43.32, p < .001).

To investigate how children’s learning of the three function
families was differently affected by whether the data were
passively received or self-selected, we conducted follow-
up comparisons. Children had lower error in the Predic-
tion Only trials than the Sample + Prediction trials when
learning the Gaussian function (b = −0.49, 95% CI =
[−0.60,−0.38], z =−8.86, p < .001) and exponential func-
tion (b =−0.13, 95% CI = [−0.23,−0.03], z =−2.43, p =
.015). However, for the linear function, prediction error did
not differ in the two types of trials (b = −0.09, 95% CI
= [−0.10,0.27], z = 0.94, p = .35). In other words, the
highly informative samples from the experimenter only led
to more accurate inferences than the self-selected samples for
the two non-linear functions, perhaps because children’s error
on the linear function was already low overall.

We then focused on the Sample + Prediction trials. We
wanted to characterize children’s sampling behavior, specif-
ically how clustered or dispersed their samples were, to test
if samples that spread across the function domain would pro-
vide a more accurate view of the function than dense samples
that only cover a small region of the domain. To do so, we
computed the standard deviation (SD) of children’s five sam-
ples in each trial (e.g., if a child sampled days 2, 5, 8, 11,
14, the sample SD would be computed based on these num-
bers). The domain ranged from 1 to 15, so possible sample
SD values ranged from 1.58 (sampling five immediately ad-
jacent points) to 6.89 (sampling the two ends, e.g., days 1, 2,
3, 14, 15). A smaller sample SD would reflect sampling ad-
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Figure 3: Distribution of trial-level sample SD.
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jacent time points, whereas a larger value would reflect sam-
pling more dispersed points. Children’s sample SD followed
a bimodal distribution (Figure 3). The major mode was be-
tween 1 and 2, roughly corresponding to a dense sampling
strategy, while the minor mode was between 4 and 5, roughly
corresponding to a dispersed sampling strategy (e.g., days 2,
5, 8, 11, 14 would have a sample SD of 4.74). We also charac-
terized children’s sampling behavior by clustering their sam-
ples, and the analysis revealed two clusters that corresponded
to the two strategies above (see https://osf.io/h48m5/ for the
clustering analysis). In theory, the sample SD measure by it-
self does not uniquely identify different strategies. However,
in practice, it provides results that converge with our cluster-
ing analysis and captures the dispersion of the samples with
an easily interpretable statistic. Therefore, we used sample
SD as a measure of children’s sampling strategy.

To test if the dispersed sampling strategy was more effec-
tive than the clustered strategy and if this effect varied across
function families, we modeled absolute prediction error with
sample SD, function family, age (in months), and the inter-
action between sample SD and function family as predictors.
Prediction error decreased with a larger sample SD, or more
dispersed samples (χ2(1) = 63.35, p < .001). Error also
varied across function families (χ2(2) = 124.07, p < .001).
Specifically, prediction error was lower for the linear func-
tion than both the Gaussian function (b = −1.05, 95% CI
= [−1.25,−0.86], z =−10.5, p < .001) and the exponential
function (b =−1.1, 95% CI = [−1.3,−0.9], z =−10.8, p <
.001), but it did not differ for the latter two functions (b =
−0.05, 95% CI = [−0.16,0.07], z = 0.8, p = .42). The ef-
fect of age did not reach significance (χ2(1) = 1.19, p= .28).
Further, the effect of sample SD varied across function fami-
lies (χ2(2) = 14.76, p < .001).

Children might have struggled with the non-linear func-
tions partly because the clustered sampling strategy would be
particularly misleading for inferring these functions. For ex-
ample, sampling the first or last five points of the Gaussian
function might lead a child to infer a roughly linear function
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Figure 4: Absolute prediction error as a function of sample
SD, with a separate Poisson regression for each function fam-
ily. Colored bands show 95% CIs for the regressions.

(Figure 1a, right), while sampling dispersed points would re-
veal the non-monotonic nature of the function (Figure 1a,
left). Thus, to test how sampling strategies might have af-
fected children’s predictions across function families, we an-
alyzed the relationship between prediction error and sample
SD separately for each function family (Figure 4). Unsur-
prisingly, given that linear functions can be inferred from any
two points, sample SD did not affect prediction performance
on the linear function (b =−0.54, 95% CI = [−1.8,0.5], z =
−1.13, p = .26). However, a larger sample SD led to lower
prediction error on the Gaussian function (b = −0.25, 95%
CI = [−0.38,−0.14], z = −4.35, p < .001) and exponen-
tial function (b = −0.17, 95% CI = [−0.3,−0.045], z =
−2.76, p = .006). Compared to clustered samples that only
covered a small region of the domain, more dispersed sam-
ples might have helped children detect the defining features
of the Gaussian function (i.e., non-monotonicity) and the ex-
ponential function (i.e., non-constant rates of change).

Lastly, we tested if children learned the correct abstract
forms of the functions (e.g., the inverted U shape of a Gaus-
sian function), regardless of if they learned the exact param-
eterizations (e.g., the specific height or location of the peak
of a Gaussian function). To test if the function that a child
predicted in a trial was best fit by the shape of the true func-
tion, we identified the best-fitting function from each of the
three function families to the predicted function; we did so
by minimizing the sum of squared error (SSE) between the
candidate and predicted functions, using a BFGS optimizer
(Nash, 2018). Out of the three candidate functions (one from
each family), the one with the lowest SSE would be the one
that best reflected the functional form that the child predicted.

For both the linear and Gaussian functions, most children’s
predictions were best fit by the shape of the true functions
in both the Prediction Only and Sample + Prediction trials
(Table 1). However, children’s predictions for the exponen-
tial function were best fit by the linear function in Predic-
tion Only trials, and all children who mislearned this function
(across both trial types) represented a linear function instead.
Nonetheless, 90% of the best-fitting functions that were clas-
sified as exponential (across both trial types) corresponded to
true functions that were actually exponential, suggesting that
a subset of children might have accurately distinguished the
exponential function from the other functional forms. While
children showed a bias towards inferring linear functions, un-
der at least some circumstances, they correctly determined
that functions were non-monotonic or non-linear.

Discussion
In an initial study, we showed that 6- to 9-year-old children
can learn different families of functions using both highly in-
formative data provided by an experimenter and self-selected
data. In aggregate, children can distinguish between linear
and non-linear functions and between monotonic and non-
monotonic functions, by predicting distinct abstract forms
for these functions. Children also learn linear functions bet-
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(a) Prediction Only

Best-fitting function

Linear Gaussian Exponential

Tr
ue

fu
nc

tio
n Linear 97.7% – 2.3%

Gaussian 28.1% 68.8% 3.1%
Exponential 77.8% – 22.2%

(b) Sample + Prediction

Best-fitting function

Linear Gaussian Exponential

Tr
ue

fu
nc

tio
n Linear 100% – –

Gaussian 45.5% 54.5% –
Exponential 45% – 55%

Table 1: Confusion matrix for the functional form that best fit the predicted function for each function family, by trial type.

ter than non-linear ones, consistent with the linear bias that
adults show in function learning (Brehmer, 1974; McDaniel
& Busemeyer, 2005). Some children already show knowl-
edge of the distinct features of non-monotonic and non-linear
functions by predicting the correct shapes of the Gaussian
and exponential functions. These results suggest that dif-
fering findings on children’s understanding of non-linear or
non-monotonic functions (e.g., Ebersbach & Resing, 2008;
Ebersbach et al., 2008) may reflect individual differences or
the sensitivity of children’s ability to the task context.

The finding that some children select useful data (e.g., dis-
persed samples) and can rely on these data to draw more ac-
curate inferences about the functions than children who se-
lect less useful data (e.g., clustered samples) is another tes-
tament to children’s powerful active learning ability, which
has been shown in many other contexts (e.g., Legare, 2012;
L. E. Schulz & Bonawitz, 2007). This knowledge of sampling
strategies also shares similarities with adults’ intuition for
choosing evenly-spaced samples, a generally helpful strategy
for learning common functions (Gelpi et al., 2021, 2023). De-
spite the fact that children overall learn more accurately with
passively received informative data than self-selected data,
the high performance of this group of effective information
seekers suggests that the effect of active learning may partly
depend on the quality of the data that learners can gather.

Why might a significant minority of children select com-
paratively uninformative samples (i.e., in 37% of sampling
trials, children selected immediately adjacent samples)? One
possibility is that children are still learning to both predict
and evaluate the usefulness of their samples. While clus-
tered samples are not maximally informative, they are also
not completely uninformative, especially early in the sam-
pling process. Children may recognize that they are receiving
new information, while failing to recognize that they could
have learned even more. They may also struggle to compare
possible sampling locations, in order to evaluate their relative
informativeness. The small sample size of this initial study
does not allow us to test how sampling strategies shift across
trials or function families. In future studies, we plan to test
if children flexibly adjust their sampling strategy based on its
effectiveness in previous trials, as well as if this adjustment
leads to better performance in subsequent trials.

Another possibility is that children who select uninforma-
tive samples may still have some nascent understanding of

the efficacy of different sampling strategies. Children can
identify efficient information-seeking questions (Ruggeri et
al., 2017) before they can generate such questions (Ruggeri
et al., 2016). Similarly, children can distinguish between
confounded and unconfounded interventions when presented
with contrasting choices (Lapidow & Walker, 2020; Sodian
et al., 1991) before they can perform unconfounded interven-
tions (Klahr et al., 2011; McCormack et al., 2016; Meng et
al., 2018). In the future, by testing children’s ability to choose
between more or less informative samples (e.g., in a forced
choice context), we could determine if children who do not
yet implement effective sampling strategies may nevertheless
recognize the usefulness of different strategies.

One concern about our task might be that children who se-
lect dispersed samples in the Sample + Prediction trials are
simply copying the experimenter’s sampling strategy in the
Prediction Only trials. However, the fact that many children
do not copy this strategy suggests that the ability to recog-
nize the helpful strategy as worth copying may itself reflect
knowledge of search strategies. Another concern might be
that the response modality of the prediction task is action-
intensive, as predicting apple quantities requires repeated tap-
ping. Children may have been incentivized to underesti-
mate the true values because less tapping is easier. How-
ever, the raw prediction error (signed) was in fact above 0
(b = 0.689, t(51) = 3.87, p < .001); children were generally
engaged in the task and did not find the tapping onerous.

In future work, we also hope to study the developmental
differences in children’s and adults’ active function learning.
Learners’ search behavior becomes less random across devel-
opment, with early exploratory sampling followed by a nar-
rower search (Blanco & Sloutsky, 2020; Gopnik et al., 2017;
Hart et al., 2022; Lucas et al., 2014). When learning common
functions, random sampling (e.g., of areas unlikely to provide
additional information) may lead to wasted time and effort.
However, when the true function to be learned is highly un-
usual, random sampling may lead to the accidental discovery
of unexpected features of the environment. Development also
affects learners’ generalization ability, or how they make in-
ferences based on existing information (Giron et al., 2023; E.
Schulz et al., 2019). Thus, even children who collect adult-
like samples that spread across the domain may draw different
conclusions about the underlying function than adults.

234



Acknowledgments
We thank members of the Computational Cognitive Develop-
ment Lab for their valuable feedback on this study. We also
thank Anwyn Gatesy-Davis and Claire Washington for their
help with recruitment and data collection. Finally, we thank
the participating research sites and families.

References
Blanco, N. J., & Sloutsky, V. M. (2020). Attentional mecha-

nisms drive systematic exploration in young children. Cog-
nition, 202, 104327.

Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K.,
& Newman-Owens, A. (2015). A learning trajectory in
6-year-olds’ thinking about generalizing functional rela-
tionships. Journal for Research in Mathematics Education,
46(5), 511–558.

Blanton, M., & Kaput, J. J. (2004). Elementary grades
students’ capacity for functional thinking. International
Group For The Psychology Of Mathematics Education.

Bott, L., & Heit, E. (2004). Nonmonotonic extrapolation in
function learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 30(1), 38.

Brehmer, B. (1974). Hypotheses about relations between
scaled variables in the learning of probabilistic inference
tasks. Organizational Behavior and Human Performance,
11(1), 1–27.
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