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Abstract

Many causal relations can be represented by continuous func-
tions that map inputs to outputs. Can young children learn con-
tinuous causal functions and generalize them from observed
data to new scenarios? We found that 4- and 5-year-olds can
represent continuous functions with different abstract forms.
After observing a few input-output pairs, children can accu-
rately infer positive linear and step functions by predicting
the outputs of novel input values. They also have emerging
knowledge of negative linear and triangular functions. While
children do not yet make consistently accurate predictions for
these functions, they can distinguish these functions from the
positive linear function and show inferential patterns that are
consistent with the respective functions. Like adults and older
children, preschoolers show an inductive bias towards pos-
itive linear functions. Their understanding of negative lin-
ear functions–which strongly requires inhibiting this inductive
bias–improves with age.
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Introduction
Children are surrounded by different forms of causal relation-
ships between continuous variables in the world. For exam-
ple, when sliding a dimmer switch, the further you move the
slider to the “on” position, the brighter the light becomes.
When building a sandcastle, adding more water to the sand
initially helps it stick together better, until you have passed
an optimal point, beyond which excess water starts reducing
the structural integrity of the mixture. When using a loyalty
punch pass at an ice cream shop, every additional point has
no immediate effect, until you have reached a threshold that
suddenly allows you to redeem the reward in full.

Functional relations are the relations mapping inputs to
outputs and, as demonstrated in the above examples, we of-
ten use them to reason about the relation between cause and
effect. To achieve desirable outcomes (e.g., building a stable
sandcastle), we need to understand not only that a cause is
related to an effect (e.g., water affects the structural integrity
of the sand mixture), but also how manipulating the cause
will change the effect. Understanding continuous causal re-
lations in this general and abstract way allows us to make
predictions about novel scenarios. Can young children learn
different continuous relations between cause and effect, and
generalize from limited experience to new examples?

While many causal relations are continuous, research on
children’s causal learning has largely focused on discrete
causal rules. Many studies have used a blicket detector
paradigm, in which a machine lights up and plays music when

certain objects are placed on it (Gopnik & Sobel, 2000). After
observing patterns of contingency between causes and effects
(e.g., green blocks all activate the machine, but red ones do
not), children as young as two years old can correctly infer
and generalize the causal rules (e.g., activating the machine
with a novel green block; Gopnik et al., 2001, 2004).

Recent work on causal relational reasoning has examined
more abstract relations, showing that the representations of
these relations emerge by preschool age. Goddu et al. (2020)
showed children that a magic wand could transform an ob-
ject from one state to another (e.g., turning a small apple into
a big one). Three- and 4-year-olds correctly predicted how a
new object would change. Similarly, after observing a shrink-
ing machine and an enlarging machine, 2- and 3-year-olds
chose the correct one to transform a misfitting object into the
right size (Goddu et al., 2025). Notably, the causal framing
enhanced children’s learning of abstract relations compared
to when the same stimuli were used in a non-causal context.
This work suggests that children can represent discrete state
changes. However, whether children’s knowledge of abstract
relations extends to continuous functions (e.g., the magnitude
of size change in a magical transformation) is less clear.

Children have been shown to recognize the general forms
of different continuous functions (e.g., monotonic versus U-
shaped, linear versus sigmoid). Coates et al. (2023) showed
children that lights and flowers differed in how their bright-
ness or petal size changed over time (e.g., both quantities
increased linearly, or increased and then decreased). When
given multiple lights and flowers that changed based on dif-
ferent functions, 4- to 7-year-olds correctly matched the lights
and flowers based on the common function that underlay each
pair. This study shows that children can distinguish between
different functional forms. However, recognizing that pat-
terns match may not be the same as representing the underly-
ing functions, which requires making predictions and gener-
alizations beyond observed data points.

To our knowledge, school-age children are the youngest
population in which the ability to generalize continuous func-
tions has been studied. Zhou et al. (2024) presented 6- to 9-
year-olds input-output pairs in a growth function (apple quan-
tities in an orchard at several time points). Using these data,
children successfully predicted outputs of novel input values
(apple quantities at previously unobserved times). Notably,
learning accuracy varied by functions–children inferred linear
functions more accurately than Gaussian or exponential ones.



Using a similar paradigm, Ebersbach and Wilkening (2007)
have found that 7- to 13-year-olds predicted linear growth
better than exponential growth. Why does performance differ
across the functions? Do children have any inductive biases
when reasoning about continuous functions?

Research on adult function learning provides strong evi-
dence of an inductive bias in these experienced learners–they
favor linear functions, especially those with a positive slope.
These studies typically show learners input-output pairs, be-
fore asking them to predict outputs for new inputs (e.g., pre-
dicting a child’s height from their age). Judgment accuracy
for both previously observed and unobserved input values is
higher for positive linear than negative linear functions, and
for linear functions (regardless of directionality) than non-
linear ones (e.g., U-shaped; Brehmer, 1974; Lucas et al.,
2015). Adults also tend to extrapolate linearly–predicting
points that fall on a straight line–even when the true relation
is non-linear (DeLosh et al., 1997; Kalish et al., 2004).

An open question is where this inductive bias about con-
tinuous functions may have originated. If this bias emerges
early, children should learn positive linear functions better
than other functions. They might show a large performance
gap between positive linear and other functions especially if
they have limited attention or memory during learning. Alter-
natively, if adults’ positive linearity bias is learned in school
or from experience, such expectations might be weaker for
children. These weaker expectations might help children re-
vise their beliefs more readily than adults after observing
belief-violating data (Lucas et al., 2014; Rich & Gureckis,
2018)–data that contradict the positive linear function in sup-
port of other functions. In other words, young children might
learn non-linear functions more easily than older children and
adults and perform similarly across different functions.

In the present study, we investigate (1) whether children
can represent and generalize any continuous causal functions
before school age. Specifically, can 4- and 5-year-olds learn
different forms of continuous functions? (2) If so, do children
exhibit an early emerging bias towards linear and positive-
linear relations, similar to older children and adults?

Children interacted with machines that played music for
different lengths of time when different-sized blocks were
placed on them. Music durations varied as a function of
block size (e.g., for the triangular function, medium-sized
blocks activated the machine for a long time, while smaller
and larger blocks activated it for short durations). Children
observed the effects of a few different-sized blocks on the
machine, before predicting the effect of block size on mu-
sic length for blocks of unobserved sizes. We expected this
causal framing to help children reason about relations be-
tween entities (Goddu et al., 2020; Walker & Gopnik, 2014).

We chose four functions: positive linear, negative linear,
triangular, and step (Figure 1c). For each function, children
answered the same set of prediction questions, which were
designed to test if they understood key features of each func-
tion and distinguished between the functions. We hypoth-

esized that preschoolers could learn about continuous func-
tions, by performing above chance on the prediction ques-
tions for at least one of the functions. The functions also vary
in abstract features (linearity and monotonicity), allowing us
to test if children’s learning is sensitive to these features.

Since linear functions are easier to learn than non-linear
ones for older children (Ebersbach & Wilkening, 2007; Zhou
et al., 2024), preschoolers might learn the two linear func-
tions better than the non-linear ones. They might also learn
the positive linear function more accurately than all the other
functions (negative linear, triangle, and step), since adults are
especially biased towards positive linear functions (Brehmer,
1974; Lucas et al., 2015). Children might also distinguish the
functions by showing divergent patterns of predictions for the
functions. However, if preschoolers do not yet share the (pos-
itive) linearity bias with older children and adults, they might
show similar learning accuracy on all functions.

Methods
Design
Participants learned relations between the size of the blocks
(X) and the length of time that the music machine activated
(Y ). Each participant encountered two functions. The first
one was always a positive linear function; given that adults
required the least training to learn positive linear functions,
we expected that showing this function first would help fa-
miliarize children with the task1. The second function varied
between participants and was either negative linear, triangu-
lar, or step. For each function, children answered the same
set of test questions, which allowed us to compare children’s
response patterns across functions.

Participants
Our preregistered sample consisted of forty-eight 4- and 5-
year-olds, eight of each year in each of the three function
conditions (Mage = 5.0, range = 4.0–5.9 years; preregistra-
tion: https://osf.io/qku9h). Ten additional children were ex-
cluded due to parental/sibling interference (4), experimenter
error (2), technical difficulties (2), or failure to complete the
full session (2). Children participated in-person.

Materials
The music machines were two boxes, each with an iPad
placed inside, directly below a transparent panel (Figure 1a).
One experimenter interacted with children while another ex-
perimenter surreptitiously controlled the machine to activate
(play music and light up) for different lengths of time, using a
Bluetooth keyboard. We 3D-printed 11 different-sized white
cubes, here referred to as Blocks 1–11, with the number cor-
responding to the block’s side length in centimeters.

Procedure
Children completed two trials, each using one of the music
machines. The experimenter introduced children to one of

1We discuss the impact of this fixed presentation order on p6.

https://osf.io/qku9h
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Figure 1: (A) Stimuli. All blocks were white, but the five blocks that children observed during learning were highlighted in
red here for demonstration purposes. (B) Correct answers for each test question based on function. (C) Functions. Red dots
represent the input-output pairs shown during learning.

the machines and the array of 11 blocks (ordered by size and
spaced out evenly). The experimenter explained, “Different
blocks make the machine play different amounts of music.
Some blocks make it go for a short time, some blocks make
it go for a long time, and some blocks make it go for some
time in the middle. Your job is to figure out how long each of
these blocks makes the machine play music.”

In the learning phase, the experimenter asked children to
try Blocks 2, 5, 6, 8, and 10 (fixed across participants) on the
machine, one at a time in ascending order. This set of blocks
was chosen to reveal key features of each function (Figure 1c)
while allowing us to control for the size of the demonstration
blocks across functions. For example, the five blocks pro-
duced increasingly longer music for the positive linear func-
tion; however, for the step function, Blocks 2 & 5 produced
the same amount of music (2s), and Blocks 6, 8, & 10 pro-
duced the same amount of music (7s), revealing that inputs
on the same interval produced the same effect and that the
step occurred between Blocks 5 & 6. After children observed
the effect of each block, the experimenter placed a visual re-
minder of the machine’s duration of activation in front of that
block. The reminders were paper strips with varying numbers
of guitar icons, where the number of guitars (and hence the
length of the strip) reflected the music duration in seconds.

In the test phase, children predicted the relative efficacy–in
terms of music duration–of five pairs of different-sized blocks
(Figure 1b). These questions were designed to test children’s
understanding of the key features of each function, as well
as if they distinguished the functions by answering the same
questions differently across the functions. For each pair, chil-

dren answered a three-answer forced-choice question, “Will
this block [Block A] make the machine go for longer, will this
block [Block B] make the machine go for longer, or will they
make it go for the same amount of time?” The first pair in-
volved two previously observed blocks, 6 and 10, and served
as a memory check (However, as preregistered, we did not
exclude children based on their memory accuracy; we ana-
lyzed the data both with and without children who failed the
memory check). The four test pairs all involved previously
unobserved blocks: (Q1) 1 vs 2, (Q2) 3 vs 9, (Q3) 7 vs 9,
(Q4) 1 vs 11. Whether the larger or smaller block in each pair
was mentioned first was counterbalanced across participants.
Children did not receive any feedback on their answers.

After children completed the first trial, the experimenter
removed the first music machine and introduced the second
machine of a different color. The experimenter told children,
“Here is a different machine. This machine also plays music
when we put the blocks on it, but the rule for how differ-
ent blocks make this machine work is different. You need to
figure out the new rule of how each block makes this new ma-
chine play music!” Children then went through the learning
and test phases described above for the second trial.

Results
Main analysis: judgment accuracy
Our main research question was whether children could learn
continuous functions, by performing above chance on the
judgment questions for at least one of the functions. We
also examined any inductive biases children might have–was



their learning accuracy higher on the (positive) linear func-
tions than the other functions? Lastly, was accuracy affected
by the specific block pairs children were comparing (e.g., two
blocks that were similar or highly different in sizes)?

To test these questions, we predicted children’s judgment
accuracy using function (positive linear, negative linear, tri-
angular, step), question number (Q1: Blocks 1 vs 2; Q2: 3 vs
9; Q3: 7 vs 9; Q4: 1 vs 11), age (continuous), and the interac-
tion between function and age. Judgment accuracy followed
a binomial distribution (correct/incorrect) and each child an-
swered multiple questions, so we used generalized logistic
mixed models, with a random intercept for each child.

Main effect of function Learning accuracy varied signifi-
cantly across functions (we used Type II Wald chi-square tests
to assess the significance of fixed effects in our models; χ2[3]
= 49.88, p < .001). We further tested whether accuracy for
each function was above chance ( 1

3 ; each forced-choice ques-
tion had three answers: whether Block A or B would make
more music, or if they would have the same effect), as well
as how accuracy varied across functions (Figure 2). Perfor-
mance was above chance on the positive linear function (es-
timated probability = .84, SE = 0.036, 95% CI = [.76, .90],
z = 8.78, p < .001) and step function (estimated probability
= .66, SE = 0.083, 95% CI = [.49, .80], z = 3.69, p < .001);
performance was at chance on the negative linear function
(estimated probability = .31, SE = 0.090, 95% CI = [.16, .51],
z = -0.27, p = .79) and marginally below chance on the trian-
gular function (estimated probability = .18, SE = 0.06, 95%
CI = [.09, .33], z = -1.95, p = .051). Children more accurately
learned the monotonically increasing positive linear and step
functions, compared to the non-monotonic triangular func-
tion and the monotonically decreasing negative linear func-
tion. Children might have a bias towards inferring functions
whose output values increase as input values increase.

Pairwise contrasts of judgment accuracy for the functions
further confirmed children’s superior performance on the pos-
itive linear and step functions. Specifically, the odds of cor-
rectly answering the test questions were higher for the posi-
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Figure 2: Judgment accuracy by function and memory accu-
racy, with 95% CIs.

tive linear function compared to the negative linear function
(OR = 12.16, SE = 5.96, 95% CI = [4.66, 31.77], z = 5.10,
p < .001), the triangular function (OR = 24.14, SE = 11.24,
95% CI = [9.70, 60.10], z = 6.84, p < .001), and the step
function (OR = 2.76, SE = 1.05, 95% CI = [1.31, 5.82],
z = 2.67, p = .008). Notably, even between the two increas-
ing functions, children still predicted the linear function more
accurately than the step function; children might prefer func-
tions that increase, particularly those that increase linearly.
Furthermore, the odds of correctly answering the questions
were also higher for the step function compared to the nega-
tive linear function (OR = 4.40, SE = 2.53, 95% CI = [1.43,
13.56], z = 2.58, p = .01) or triangular function (OR = 8.74,
SE = 4.83, 95% CI = [2.96, 25.80], z = 3.93, p < .001). Ac-
curacy on the negative linear and triangular functions did not
differ (OR = 1.99, SE = 1.13, 95% CI = [0.65, 6.08], z= 1.20,
p= .23), suggesting that children did not distinguish between
the two functions that did not increase monotonically.

Main effect of question Learning accuracy also varied
across test questions (χ2[3] = 8.11, p = .044). In other words,
the specific blocks for comparison (e.g., blocks that were sim-
ilar or highly different in sizes) affected the ease of judging
the relative efficacy of the blocks. Pairwise contrasts showed
that the odds of correctly answering Q4 (Blocks 1 vs 11,
smallest vs largest) were significantly higher compared to Q1
(Blocks 1 vs 2; OR = 2.79, SE = 1.06, 95% CI = [1.33, 5.88],
z = 2.70, p = .007) and Q3 (Blocks 7 vs 9; OR = 2.15, SE =
0.82, 95% CI = [1.02, 4.52], z = 2.02, p = .043). The com-
parisons of other pairs of questions did not reach significance
(all |z| ≤ 1.62, all p > .10.) Children might be better at com-
paring output values of highly different inputs (e.g., Blocks
1 vs 11) than similar inputs (e.g., Blocks 1 vs 2). Put dif-
ferently, children might be more sensitive to the overall trend
of the function (e.g., whether it was increasing or decreasing)
than its specific shape within a narrow region (e.g., whether
two adjacent blocks would have the same or different effects).

Interaction effect of age and function The main effect of
age did not reach significance (χ2[1] = 2.27, p = .13), how-
ever, the interaction between age and function was signifi-
cant (χ2[3] = 10.34, p = .016). We further tested how the
age effect varied across functions (Figure 3). Age only im-
proved accuracy on the negative linear function (b = 0.23, SE
= 0.070, 95% CI = [0.090, 0.37], z = 3.24, p = .001) but not
the others (all |z| ≤ 1.59, all p > .11). Children might have
shown the largest improvement on the negative linear func-
tion because it requires fully inhibiting the positive linearity
bias; children have to suppress the urge to respond based on
a positive linear pattern and have to reverse it to learn the
opposite relation. Inhibitory control and cognitive flexibil-
ity develop rapidly during the preschool years (Zelazo et al.,
2003), which might explain the drastic age effect here.

Memory and performance As preregistered, we also con-
ducted the main analysis with only children who passed the
memory check (Blocks 6 vs 10, two previously observed
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Figure 3: Judgment accuracy across age, with a separate lo-
gistic regression for each function and 95% CIs.

blocks) in both trials (n = 32 out of 48). These children
performed above chance on the negative linear function (es-
timated probability = .58, SE = 0.11, 95% CI = [.36, .78],
z = 2.19, p = .029; Figure 2). Their accuracy on the other
functions and the age effect were consistent with the results
based on the full sample. These children who had high task
engagement and accurate memory during learning performed
better on the more challenging negative linear function, which
required overcoming a possible positive linearity bias.

Secondary analysis: response pattern
We also investigated if children differentiated the functions,
by responding to the test questions differently across the func-
tions (Figure 4). For example, if children understood the de-
creasing nature of the negative linear function, they should
predict that the smaller block (out of any pair of blocks)
would activate the machine for longer. Compared to when
learning the positive linear or step functions, children should
pick the smaller block more often when learning the nega-
tive linear and triangular functions, which both have a nega-
tive linear component. We could not run a categorical model
to analyze the frequency of picking the three answers across
functions because some answers were never chosen for cer-
tain function and question combinations. Therefore, we cre-
ated three binary variables, one for each answer, indicating
whether children chose the smaller block, the larger block, or
”same,” respectively (e.g., choosing ”smaller” would corre-
spond to the values of 1, 0, and 0). We ran three generalized
logistic mixed effects models, one with each binary variable
as the outcome. In each model, we predicted whether chil-
dren chose that answer using function and question number,
treating the positive linear function as the reference category.

The probability of choosing the smaller block indeed var-
ied across functions (χ2[3] = 42.03, p < .001). Consistent
with the correct pattern of responding (Figure 4), the odds of
choosing the smaller block were higher for the negative lin-
ear function compared to the positive linear function (OR =

21.38, SE = 11.98, 95% CI = [7.13, 64.13], z = 5.47, p <
.001) and higher for the triangular function (which has a de-
creasing component) compared to the positive linear function
(OR = 10.71, SE = 5.46, 95% CI = [3.94, 29.08], z = 4.65,
p < .001). As expected, the odds of choosing ”smaller” did
not differ for the step and positive linear functions (OR =
0.58, SE = 0.49, 95% CI = [0.11, 3.09], z =−0.64, p = .52).

For the step function, if children knew that inputs on
the same interval lead to the same output, they should pick
”same” more often when learning this function compared
to the positive linear function. The probability of picking
“same” varied marginally by functions (χ2[3] = 7.04, p =
.071). As expected, the odds of picking “same” were higher
for the step function than the positive linear function (OR =
2.85, SE = 1.36, 95% CI = [1.12, 7.28], z = 2.19, p = .029).

Lastly, children should choose ”larger” most often for the
positive linear function, for which it is the correct answer to
every question. The probability of choosing ”larger” differed
across functions (χ2[3] = 40.7, p < .001). As expected, the
odds of choosing the larger block were higher for the positive
linear function compared to the negative linear (OR = 16.32,
SE = 7.98, 95% CI = [6.26, 42.57], z = 5.71, p < .001),
triangular (OR = 5.23, SE = 2.25, 95% CI = [2.25, 12.15],
z = 3.84, p < .001), and the step (OR = 2.30, SE = 0.95, 95%
CI = [1.02, 5.17], z = 2.01, p = .044) functions.

Discussion
Our results are the first to suggest that 4- and 5-year-olds
already have some knowledge of continuous functional re-
lations between cause and effect. They accurately infer the
positive linear and step functions from observing a few data
points and rely on these relations to predict the outputs of
novel input values. Like adults and older children, preschool-
ers may be biased towards inferring linear or monotonically
increasing functions. Children do not yet perform above
chance on the negative linear or triangular functions; how-
ever, they show different response patterns that align with the
respective functions and that reflect a differentiation of those
functions from the positive linear function.

Why do children struggle with the negative linear func-
tion, especially when they perform well on the non-linear
step function? While past work has shown that children learn
linear functions more accurately than non-linear ones (Ebers-
bach & Wilkening, 2007; Zhou et al., 2024), neither study has
explicitly tested increasing linear functions against decreas-
ing ones. Moreover, adults show superior performance on
positive linear than negative linear functions (Brehmer, 1974;
Lucas et al., 2015). One possibility is that children are biased
towards learning both linear functions (regardless of direc-
tionality) and increasing functions (regardless of functional
form, as suggested by their accuracy of forecasting exponen-
tial growth versus decline; Ebersbach et al., 2008). When
learning functions that involve both features, the positivity
bias may outweigh the linearity bias. Another possibility is
that children are only biased towards positive linearity.
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If children indeed have a positive linearity bias, they may
have knowledge of negative linear (and triangular) functions
but fail to demonstrate it due to the need to inhibit the bias.
For the negative linear function, children always need to pick
answers that are the opposite of what is true for the posi-
tive linear function. Children improve drastically on the neg-
ative linear function in the 4-6 year window we test here,
when inhibitory control is known to develop rapidly (Zelazo
et al., 2003). Providing anecdotal support for this explana-
tion, some children spontaneously verbalize the negative lin-
ear relation, only to answer the questions based on the pos-
itive linear pattern; other children answer the first two ques-
tions based on the negative linear relation, before switching
back to the positive linear pattern for the remaining questions.

Even if children do not perform above chance on the neg-
ative linear and triangular functions yet, they do show some
knowledge of the respective functional forms. They correctly
pick the smaller block more often for the negative linear and
triangular functions (which both have a decreasing compo-
nent) compared to the increasing functions. This aligns with
findings that older children correctly infer the shape of non-
linear functions even if accuracy is higher on linear functions
(Zhou et al., 2024). The triangular (and step) functions may
also be more complex; children may have some general ideas
(e.g., the former is non-monotonic and the latter has intervals)
but not all the details (e.g., where the peak or step occurs).

We have chosen to always present the positive linear func-
tion first to facilitate task comprehension, as adults require the
least training to learn this function; however, this fixed pre-
sentation order could have differentially impacted the learn-
ing of the subsequent functions. Specifically, the positive lin-

ear function shared 0%, 25%, and 50% of the answers with
the negative linear, triangular, and step functions, respectively
(Figure 1b). Although the triangular function shared more
answers with the positive linear function than the negative
linear function did, children who passed the memory check
performed at chance on the former but above chance on the
latter. Furthermore, children chose “same” more often for the
step function compared to the positive linear function, both
when “same” was the correct answer and when “larger”, the
answer under the positive linear function, was the correct an-
swer (Figure 4). These results partially challenge the inter-
pretation that performance on the second function reflects its
similarity to the first function.

Another concern is that children could have interpreted the
X axis as reflecting the block’s volume instead of side length,
perceiving the axis non-linearly (a 1 cm change of side length
could lead to different changes in volume). To facilitate accu-
rate perception of both axes, we spaced out the blocks evenly
and provided visual reminders of music duration (paper strips
of varying lengths). Non-linear perception also does not seem
to explain the response patterns (e.g., children often fail on
the negative linear function by picking “larger” based on the
positive linear function, not by picking ”same” from an in-
ability to discriminate between the smaller blocks).

Using an innovative task, we found that preschoolers can
learn continuous causal functions and may have a positive lin-
earity bias. They do not yet accurately infer non-monotonic
or decreasing functions, which may be due to their strong in-
ductive biases, poor inhibitory control, partial knowledge of
the functions, or difficulty with representing the functions.
We hope to disentangle these possibilities in our future work.
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